skip to main content


Search for: All records

Creators/Authors contains: "Tuazon, Harry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the “blob”, which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives. 
    more » « less
    Free, publicly-accessible full text available September 17, 2024
  2. Studies of entangling and disentangling worms show the role of individual motions in controlling collective dynamics. 
    more » « less
  3. The design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable ‘smart’ materials. However, the global emergent mechanics that arise from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in an in silico collection of u-shaped particles (“smarticles”) and in living entangled aggregate of worm blobs ( L. variegatus ). In simulations, we examine how material properties change for a collective composed of smarticles as they undergo different forcing protocols. We compare three methods of controlling entanglement in the collective: external oscillations of the ensemble, sudden shape-changes of all individuals, and sustained internal oscillations of all individuals. We find that large-amplitude changes of the particle's shape using the shape-change procedure produce the largest average number of entanglements, with respect to the aspect ratio ( l / w ), thus improving the tensile strength of the collective. We demonstrate applications of these simulations by showing how the individual worm activity in a blob can be controlled through the ambient dissolved oxygen in water, leading to complex emergent properties of the living entangled collective, such as solid-like entanglement and tumbling. Our work reveals principles by which future shape-modulating, potentially soft robotic systems may dynamically alter their material properties, advancing our understanding of living entangled materials, while inspiring new classes of synthetic emergent super-materials. 
    more » « less
  4. Synopsis

    Many organisms exhibit collecting and gathering behaviors as a foraging and survival method. Benthic macroinvertebrates are classified as collector–gatherers due to their collection of particulate matter. Among these, the aquatic oligochaete Lumbriculus variegatus (California blackworms) demonstrates the ability to ingest both organic and inorganic materials, including microplastics. However, earlier studies have only qualitatively described their collecting behaviors for such materials. The mechanism by which blackworms consolidate discrete particles into a larger clump remains unexplored quantitatively. In this study, we analyze a group of blackworms in a large arena with an aqueous algae solution (organic particles) and find that their relative collecting efficiency is proportional to population size. We found that doubling the population size (N = 25–N = 50) results in a decrease in time to reach consolidation by more than half. Microscopic examination of individual blackworms reveals that both algae and microplastics physically adhere to the worm’s body and form clumps due to external mucus secretions by the worms. Our observations also indicate that this clumping behavior reduces the worm’s exploration of its environment, possibly due to thigmotaxis. To validate these observed biophysical mechanisms, we create an active polymer model of a worm moving in a field of particulate debris. We simulate its adhesive nature by implementing a short-range attraction between the worm and the nearest surrounding particles. Our findings indicate an increase in gathering efficiency when we add an attractive force between particles, simulating the worm’s mucosal secretions. Our work provides a detailed understanding of the complex mechanisms underlying the collecting–gathering behavior in L. variegatus, informing the design of bioinspired synthetic collector systems, and advances our understanding of the ecological impacts of microplastics on benthic invertebrates.

     
    more » « less
  5. Abstract

    Many organisms utilize group aggregation as a method for survival. The freshwater oligochaete, Lumbriculus variegatus (California blackworms) form tightly entangled structures, or worm “blobs”, that have adapted to survive in extremely low levels of dissolved oxygen (DO). Individual blackworms adapt to hypoxic environments through respiration via their mucous body wall and posterior ciliated hindgut, which they wave above them. However, the change in collective behavior at different levels of DO is not known. Using a closed-loop respirometer with flow, we discover that the relative tail reaching activity flux in low DO is ∼75x higher than in the high-DO condition. Additionally, when flow rate is increased to suspend the worm blobs upward, we find that the average exposed surface area of a blob in low DO is ∼1.4x higher than in high DO. Furthermore, we observe emergent properties that arise when a worm blob is exposed to extreme DO levels. We demonstrate that internal mechanical stress is generated when worm blobs are exposed to high DO levels, allowing them to be physically lifted off from the bottom of a conical container using a serrated endpiece. Our results demonstrate how both collective behavior and the emergent generation of internal mechanical stress in worm blobs change to accommodate differing levels of oxygen. From an engineering perspective, this could be used to model and simulate swarm robots, self-assembly structures, or soft material entanglements.

     
    more » « less
  6. null (Ed.)
    Numerous worm and arthropod species form physically-connected aggregations in which interactions among individuals give rise to emergent macroscale dynamics and functionalities that enhance collective survival. In particular, some aquatic worms such as the California blackworm ( Lumbriculus variegatus ) entangle their bodies into dense blobs to shield themselves against external stressors and preserve moisture in dry conditions. Motivated by recent experiments revealing emergent locomotion in blackworm blobs, we investigate the collective worm dynamics by modeling each worm as a self-propelled Brownian polymer. Though our model is two-dimensional, compared to real three-dimensional worm blobs, we demonstrate how a simulated blob can collectively traverse temperature gradients via the coupling between the active motion and the environment. By performing a systematic parameter sweep over the strength of attractive forces between worms, and the magnitude of their directed self-propulsion, we obtain a rich phase diagram which reveals that effective collective locomotion emerges as a result of finely balancing a tradeoff between these two parameters. Our model brings the physics of active filaments into a new meso- and macroscale context and invites further theoretical investigation into the collective behavior of long, slender, semi-flexible organisms. 
    more » « less